Застосування інтерактивних технологій на уроці алгебри в ході вивчення теми: «Розкладання многочленів на множники способом винесення спільного множника за дужки і способом групування»

Статті і корисна інформація » Активізація навчально-пізнавальної діяльності на уроках алгебри » Застосування інтерактивних технологій на уроці алгебри в ході вивчення теми: «Розкладання многочленів на множники способом винесення спільного множника за дужки і способом групування»

Сторінка 2

Під час уроку формування вмінь та навичок йде постійна перевірка, наскільки учні запам'ятовують викладений матеріал. Учням постійно доводиться працювати не тільки з новим матеріалом, але й з викладеним раніше, що дозволяє формувати у них розуміння цілісності навчального процесу. Використання методів активізації навчання дозволяє зберігати активність учнів протягом уроку. Дану роботу можна вдосконалювати, використовуючи різні форми подачі нового матеріалу чи його закріплення різних прийомів мотивації, проведення ділових та рольових ігор. При необхідності можна переглянути критерії та норми контрольно-оцінювальної діяльності.

Головним напрямком у викладанні математики є викладання математики як засобу мислення учнів. Методика викладання випливає з того, що є метою навчання, спирається на вікові особливості учнів та на розуміння причин, що гальмують сприйняття відповідного матеріалу.

Активізація пізнавальної діяльності учнів не можлива без активізації їх уваги. Недостатня увага заважає учням, приймати повноцінну участь у колективній роботі на уроці, приводить до нерозуміння навчального матеріалу, поганого запам'ятовування, помилок при виконанні завдань. Потрібно періодично проводити математичні диктанти. Вони привчають дітей уважно стежити за мовою вчителя, відразу включатися у виконання завдання, сприяють виробленню певного ритму роботи.

Важливою умовою активізації та підтримування довільної уваги є забезпечення мотиваційної сторони навчальної діяльності, вироблення позитивного ставлення до того, що пізнається, і до самого процесу пізнання. В діяльності учнів важливішим є не результат, до якого вони приходять, а ті шляхи, способи мислення, за допомогою яких вони одержують цей результат.

До позакласної роботи як засобу активізації пізнавальної діяльності учнів доцільно підходити диференційовано, враховуючи рівень математичного розвитку, вікові та психологічні особливості учнів.

Навчально-виховний процес повинен: бути імітацією того середовища, в якому перебувають учні; містити в собі конкретні цілі, завдання і проблеми громадської і трудової діяльності людини; забезпечити формування здібностей, розв'язувати практичні завдання, змінювати і покращувати той предметний світ, у якому живуть діти зараз і будуть жити в майбутньому. Активне навчання повністю відповідає цим вимогам. В його основі лежить принцип безпосередньої участі, який зобов'язує вчителя бути учасником навчально-виховного процесу, який вміє діяти, вести пошук шляхів і способів розв'язання тих проблем, які вивчаються у навчальному курсі. Цьому сприяють активні методи навчання, які дозволяють формувати знання, уміння і навички шляхом залучення тих, хто навчається, до активної навчально-пізнавальної діяльності.

Застосування інтерактивних технологій вимагає старанної підготовки вчителя та учнів. Вони повинні навчитися успішно спілкуватися, використовувати навички активного слухання, висловлювати особисті думки, переконувати і бути переконливими, ставити запитання і відповідати на них.

Отже, на уроках потрібно створювалися ситуації, які стимулювали б самостійність розумової діяльності школярів (приклади з життя та побуту). Учні мали б право захищати свою думку, наводили на її захист аргументи, докази, використовуючи при цьому здобуті знання. Вони мали можливість задавати питання вчителю, товаришам. Крім того, вони мали можливість ділитися і своїми знаннями з іншими, допомагали товаришам долати труднощі, створювали ситуації самоперевірки, аналізу особистих пізнавальних і практичних дій.

«Червоні»

Розкладанння на множники винесенням спільного множника за дужки

21а3х2–28а3х3+35а2х4; 6) b(a–5)–4(5–a); 11)1,2a3b4–3,6a4b4+2,4a4b3;

5х2–10ху+5ху2; 7)x+x2+x3 ; 12)0,6a2b2–0,8ab2+0,4a2b.

(3–а)2=5(3–а); 8)–x3+x2–x4;

(c–5)2+2c(c–5); 9)27a4b2c3–18a3b4c2;

2(a–b)–m(b–a); 10)16a2bc2+24ab2c;

«Сині»

Розкладання на множники способом групування

a(b+1)–b–1; 2)b(2–a)–a+2;

3)3a–b–x(b–3a); 4)2(a+b)2+a+b

5)3(b–2)2+2–b; 6)6(a–b)7+a(a–b)8;

7)8a2–4ab–12a+6b; 8)6ab+9a2–2b2–3ab;

9)6a–6b+an–2a; 10)xy–3y+y2–3x;

11)ab–2b+b2–2a; 12)ma+6m–3a–18.

Розкладанння многочленів на множники за допомогою формул скороченого множення

1)1–100a2; 2)36–81a2;

3)a2+2a+1; 4)1+4a+4a2;

5)9–6a+a2; 6)a2b2+4a2+4;

7)4a4–12a2b3+9b6; 8)9a–a3;

9)a2b–4b3; 10)75a4–3;

11)4+4(2a+1)+(2a+1)2; 12)9–6(2–a)+(2–a)2;

13)(3a+1)2–2(3a+1)(1–a)+(1–a)2;

14)–6(2–a)(a+3)–(2–a)2–9(a+3)3.

Страницы: 1 2 3 4

Актуально про педагогіку:

Системи тригонометричних рівнянь
При розв’язуванні систем тригонометричних рівнянь використовуються ті ж прийоми, що і при розв’язуванні систем алгебраїчних рівнянь, а також формули тригонометрії. Звичайно при розв’язуванні тригонометричних систем останні зводять або до одного рівняння з одним невідомим, або до системи рівнянь від ...

Стан проблеми в практиці роботи сучасної школи
Досвід роботи вчителів переконує, що для підвищення якості знань учнів важливе значення має правильна організація і методика проведення проблемного навчання на уроках обслуговуючої праці. Останні залежать від наявності педагогічних умов. Експерименти з даної проблеми проводились на базі середньої ш ...

Характеристика загальних закономірностей педагогічного процесу
В закономірностях відображаються об’єктивні, необхідні, суттєві, повторювані за однотипних умов зв’язки та відношення явищ чи процесів дійсності або їхніх різних сторін. В такій складній, великій та динамічній системі, як педагогічний процес, проявляється велика кількість різноманітних зв'язків та ...

Навігація по сайту

Copyright © 2020 - All Rights Reserved - www.startpedahohika.com