Методичні вимоги щодо вибору навчальної програми з курсу «Застосування ІКТ у процесі навчання математики»

Статті і корисна інформація » Методика проведення лабораторних занять з курсу "Застосування ІКТ у навчальному процесі з математики" » Методичні вимоги щодо вибору навчальної програми з курсу «Застосування ІКТ у процесі навчання математики»

Сторінка 9

Знайти об’єм тіла та площу повної поверхні тіла, утвореного обертанням навколо осі Оу функції та .

Рис.11

Відповідь: об’єм тіла 27.59 од.куб. та площа повної поверхні тіла, утвореного обертанням навколо осі Оу функції та дорівнює 169.63 од.кв (Рис.11).

9. Розв’язати нерівність >.

Будуємо графіки функцій f(x)= i g(x)=.(Рис.12)

На екрані бачимо, що графіки функцій f(x) та g(x) перетинаються у трьох точках x = − 1; x = 0 та x = 2 . Перевіряємо чи є ці числа коренями рівняння =.

З’ясовуємо що розв’язками нерівності f(x)> (<) g(x) будуть ті значення аргументу, при яких графік функцій f(x) знаходиться вище (нижче) графіка функцій g(x). За допомогою графіка приходимо висновку, що задана нерівність виконується, якщо x ∈ (− ∞ ; − 1 ) ∪(− 1; 0 ) ∪(2; +∞ ).

Отже, маємо розв’язок: x ∈ (− ∞ ;−1) ∪(− 1; 0 )∪ (2; + ∞ ).

Рис.12

10. Побудувати графік функції

Для цього задаємо тип функції «неявна», а – задаємо як Р1. Змінюючи значення параметру за допомогою повзунку або вводячи значення Р1 з клавіатури ми бачимо як змінюється радіус кола (Рис.13.1). Якщо значення Р1 більше нуль або дорівнює 0, то порушується умова (Рис.13.2).

Рис.13.1

Рис.13.2

11. Побудувати графік функції

При початкових значеннях Р1=0 та Р2=0 ми отримуємо симетричну відносно вісі Оу фігуру, яка проходить черех початок координат (Рис.14.1). Якщо змінювати параметр Р1 (не змінюючи Р2) то ми бачимо як порушується симетрія, а функція все одно проходить через початок координат (Рис.14.2). Якщо змінювати параметр Р2 (не змінюючи Р1) ми бачимо, що симетрія не порушується, але відбуваеться ковзання графіку вздовж осі Оу (Рис.14.3). Якщо змінювати обидва параметри Р1 та Р2, то порушується і симетрія, і відбувається рух вздовж осі Оу.

Рис.14.1

Рис.14.2

Рис.14.3

Побудувати графік функції

Якщо надати початкове значення Р1 = 0, то ми отримуємо розривну функцію (Рис.15.1). Якщо збільшувати значення параметра, то бачимо, що функція не має точок розриву, а при великому збільшенні Р1 не перетинає вісь Ох і піднімається вздовж Оу (Рис.15.2). Якщо ж навпаки зменшувати значення Р1, ми бачимо, що графік губить одну свою частину і рухається у ІІІ чтверть (Рис.15.3).

Рис.15.1

Рис.15.2

Рис.15.3

Побудувати графік функції

При початкових значеннях Р1 та Р2 ми бачимо, що графік функції складається з 2х частин і знаходиться у нижній частині сітки координат. При зміні Р1 відбувається зміна графіка (випуклість або вогнутість) (Рис.16.1), при зміні Р2 відбувається рух вздовж осі Оу (Рис.16.2). При зміні обох параметрів відбувається і рух вздовж осі ОУ, і зміна графіку (Рис.16.3).

Страницы: 4 5 6 7 8 9 10 11 12 13 14

Актуально про педагогіку:

Метод розвитку творчого самопочуття
Метод розвитку творчого самопочуття включає ігри і завдання з розвитку мимовільної регуляції і навичок мимовільної поведінки, відчуття партнера, уяви, спостережливості, почуття ритму тощо. Особливе місце тут посідає використання елемента «театралізації» і «драматизації» у педагогічному процесі, що ...

Проектування технології формування ООД
Орієнтована основа діяльності в педагогіці та психології визначається як група дій, спрямованих на всебічну інформацію про майбутню навчальну діяльність. Метою розробки технології формування нових знань є проектування і реалізація оптимальної ООД, яка дозволить сформувати необхідні професійні дії і ...

Суть шкільної адаптації першокласників
Початок навчання в школі - один з найбільш складних і відповідальних моментів в житті дітей, як в соціально - педагогічному, психологічному, так і фізичному плані. Поступивши в школу, дитина стає школярем далеко не відразу. Це становлення, входження, в шкільне життя відбувається впродовж початкової ...

Навігація по сайту

Copyright © 2019 - All Rights Reserved - www.startpedahohika.com